Recognition in Ants: Social Origin Matters
نویسندگان
چکیده
The ability of group members to discriminate against foreigners is a keystone in the evolution of sociality. In social insects, colony social structure (number of queens) is generally thought to influence abilities of resident workers to discriminate between nestmates and non-nestmates. However, whether social origin of introduced individuals has an effect on their acceptance in conspecific colonies remains poorly explored. Using egg-acceptance bioassays, we tested the influence of social origin of queen-laid eggs on their acceptance by foreign workers in the ant Formica selysi. We showed that workers from both single- and multiple-queen colonies discriminated against foreign eggs from single-queen colonies, whereas they surprisingly accepted foreign eggs from multiple-queen colonies. Chemical analyses then demonstrated that social origins of eggs and workers could be discriminated on the basis of their chemical profiles, a signal generally involved in nestmate discrimination. These findings provide the first evidence in social insects that social origins of eggs interfere with nestmate discrimination and are encoded by chemical signatures.
منابع مشابه
The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons.
Chemical communication is central for the formation and maintenance of insect societies. Generally, social insects only allow nest-mates into their colony, which are recognized by their cuticular hydrocarbons (CHCs). Social parasites, which exploit insect societies, are selected to circumvent host recognition. Here, we studied whether chemical strategies to reduce recognition evolved convergent...
متن کاملRecognition in a Social Symbiosis: Chemical Phenotypes and Nestmate Recognition Behaviors of Neotropical Parabiotic Ants
Social organisms rank among the most abundant and ecologically dominant species on Earth, in part due to exclusive recognition systems that allow cooperators to be distinguished from exploiters. Exploiters, such as social parasites, manipulate their hosts' recognition systems, whereas cooperators are expected to minimize interference with their partner's recognition abilities. Despite our wealt...
متن کاملKinship, greenbeards, and runaway social selection in the evolution of social insect cooperation.
Social Hymenoptera have played a leading role in development and testing of kin selection theory. Inclusive fitness models, following from Hamilton's rule, successfully predict major life history characteristics, such as biased sex investment ratios and conflict over parentage of male offspring. However, kin selection models poorly predict patterns of caste-biasing nepotism and reproductive ske...
متن کاملExperimental modulation of external microbiome affects nestmate recognition in harvester ants (Pogonomyrmex barbatus)
Social insects use odors as cues for a variety of behavioral responses, including nestmate recognition. Past research on nestmate recognition indicates cuticular hydrocarbons are important nestmate discriminators for social insects, but other factors are likely to contribute to colony-specific odors. Here we experimentally tested whether external microbes contribute to nestmate recognition in r...
متن کاملWax On, Wax Off: Nest Soil Facilitates Indirect Transfer of Recognition Cues between Ant Nestmates
Social animals use recognition cues to discriminate between group members and non-members. These recognition cues may be conceptualized as a label, which is compared to a neural representation of acceptable cue combinations termed the template. In ants and other social insects, the label consists of a waxy layer of colony-specific hydrocarbons on the body surface. Genetic and environmental diff...
متن کامل